
Protecting
confidential
information
using data diodes

technology explained

White Paper

July 2014

This paper focuses on situations where confidentiality has priority over integrity, where "protecting secrets" (Figure
1) is essential. Data diodes can also be deployed for "protecting assets" (Figure 2), where integrity is essential and
confidentiality is of secondary priority, typically when protecting industrial installations. For the sake of clarity, we will
focus on the "protecting secrets" scenarios in this paper.

Introduction

By dr. Wouter Teepe, Fox-IT
and Colin Robbins, Nexor

secrets may
not leak

SECURE ENVIRONMENT
classified information

PROTECTING SECRETS

disclosure can lead to disaster

information
may get in

internet

Upstream Downstream

When protecting an isolated network against outsider attacks, there
are a number of objectives and technologies that are commonly used.
Objectives typically boil down to C.I.A.: confidentiality, integrity and
availability. The best possible technology for confidentiality is the
unidirectional network connection by means of a data diode. However,
there is a lot of technology relating to data diodes that impacts integrity
and availability. In particular, protocol breaks and content checking have
a subtle relation to these objectives. This briefing paper will explain
how these technologies relate to one another and to the principal C.I.A.
security objectives.

 2 | protecting confidential information using data diodes

figure 1:

the “protecting secrets”

scenario

figure 2:

the “protecting assets”

scenario

PROTECTING ASSETS

Downstream

status information
may get out

SECURE ENVIRONMENT
critical processes

manipulation can lead to disaster

no external
interference

internet

Upstream

protecting confidential information using data diodes | 3

A unidirectional network connection is a link between
two networks for which it can be guaranteed that the
information only flows from the one network to the other,
and not in the other direction. The source network is
typically referred to as "upstream" and the destination
network as "downstream". A typical scenario is where the
downstream network contains highly classified information
which should not be leaked to the outside world, while the
upstream network is directly or indirectly linked to that
outside world. In this scenario, the unidirectional network
connection is "protecting secrets". The unidirectional
network connection prevents "data leakage" or "data
exfiltration" from the downstream network.

However, confidentiality may not be the only protec-
tion objective of the downstream network. Due to the
unidirectional network connection, data cannot come out
of the downstream network, but the data flowing into the
downstream network may still cause harm. The data could
“attack” the downstream network.

A unidirectional network connection is often implemented
and enforced using a network device called a data diode,
as described in this paper, supported by specialist security
software.

Creating a unidirectional network connection does not
prevent all methods of data leakage.
1. If there is another network connection between the

upstream and downstream network next to the data
diode, data can be exfiltrated by means of the other
network connection.

2. If it is possible on the downstream network to store
information on portable storage media such as USB
sticks, this media can be physically exfiltrated and as
such provide a means for data leakage. Controls are
needed to prevent people from using such media.
Controls may vary from technical controls such as
disabling USB ports to procedural controls such as
complete prohibition of portable media. When a data
diode is deployed, the operational benefit of using such
media decreases so much that it is possible to impose
strict business policies on portable media use without
a major business impact. Without a data diode, a strict
portable media policy would lead to highly impractical
situations.

3. A data diode does not prevent people from printing
documents and carrying them to places where they
should not end up, or from reading documents and
telling the contents to people who are not allowed to
know it.

Unidirectional network
connections

 4 | protecting confidential information using data diodes

figure 3:

data sent using

a protocol

Attacking the downstream
network

Computer security attacks come in many forms; a common
method of attack is to get a computer to behave in a
way not considered by the designers and seek to take
advantage of that. Modifying protocols, for example, to
send information that is non-compliant to the protocol is
one way of inducing errors in a poorly designed system.

A common example of this kind of attack is the buffer
overflow1. Buffer overflows can occur at any layer in
the protocol stack – from the network interface to the
application. Buffer overflow vulnerabilities have been seen
in all kinds of places, ranging from PDF files2 to network
cards3.

So when letting data onto a downstream network, the
network may be exposed to attacks which are embedded
into the information flowing onto that network, even if
the information flow is one way. A data diode makes sure
that such an attack cannot lead to data leakage – even if
the attackers manage to establish a command and control
server, the server will not be able to communicate back via
the data diode. However, availability and integrity of the
downstream network are potentially still at risk.

This is almost where the protocol break enters the arena.
However, let us first look closely at the information flowing
into the downstream network.

In general, this data can be divided into payload data and
traffic control data. The payload data contains the data that
the sender wants to send to the downstream network. For
example, this may be a file, an email or a print job. This
payload data is essentially static: the message that is sent
should be the same as the message that is delivered (later
in the paper we discuss some security reasons why the
message may be deliberately transformed into something
else). The payload may also contain complex types with
multiple files embedded such as ZIP and MIME formats.

 1 https://en.wikipedia.org/wiki/Buffer_overflow
2 http://resources.infosecinstitute.com/hacking-pdf-part-2/
3 http://theinvisiblethings.blogspot.co.uk/2010/04/remotely-attacking-network-cards-or-why.html

Traffic
Control

Data
payload

protecting confidential information using data diodes | 5

Protocol

To deliver the payload, a protocol is used. A protocol is a
set of communication agreements, which ensure that if
both sides of a communication channel adhere to it, the
payload gets delivered correctly. To achieve its design
objectives, a protocol introduces extra data into the data
flow to coordinate these protocol specific goals: traffic
control data. A protocol takes care of many things that a
normal computer user is never aware of: that the payload
gets routed in the right direction; that it is chopped
into parts where needed and reassembled again where
possible. Protocols may do very complicated things like
compression, tunneling, load balancing, authentication,
caching, spooling, all kinds of things to make the
communication go smoothly. Examples include FTP, SMTP
and HTTP.

All this complexity which goes into these protocols makes
the system work, but only under the condition that both
sides are cooperative. An attacker may take the liberty

not to be cooperative, and send malformed traffic control
data. This can cause a buffer overflow or other fault in the
receiving system, and with it launch a successful attack.
Heartbleed4 was an example of this where the attacker
chose not to be cooperative by misinforming the protocol
about the size of the payload.

In the "protecting secrets" scenario it can generally be
assumed that the attacker has access to the upstream
network. From the upstream network, the attacker could
attack the downstream network by abusing a design flaw
in one of the systems on the downstream network.

A unidirectional network connection prevents such an
attack from leading to data leakage. The attack may still
cause harm in terms of integrity and availability on the
downstream network. A protocol break effectively cuts out
attack vectors which live in the traffic control data, as will
be discussed next.

4 http://heartbleed.com

 6 | protecting confidential information using data diodes

The diagram shows that system B (downstream) will never
directly speak to system A (upstream) – communications
go via the catcher and thrower. This means that an attacker
must undergo a long chain of attacks to reach system B. At
first glance, you might conclude that the catcher and the
thrower only make the attack on system B somewhat more
cumbersome but not impossible. There is an ingenious
way of preventing this.

The attacks that can be caused by one of the parties
not adhering to a protocol can only be prevented by
making sure that in the environment where attacks are
not acceptable, both parties in the protocol are trusted.
For unidirectional communication scenarios, that means
that the side sending the payload (upstream) should be
trustworthy, at least from the perspective of the receiver
(downstream). The only way to ensure this is by the
application of a protocol break.

A protocol break consists of two components that sit
between the sender and the receiver of a message. The first
one is a "catcher", which, while adhering to the protocol,
strips all traffic control data from the data it receives, and
keeps only the payload data. The second component is a
"thrower". The thrower does the opposite: it takes bare
payload data, and sends the payload to another system
by means of some chosen protocol. In order to do this
successfully, the thrower does all the complicated things
that are necessary to adhere to the protocol specifications,
including the creation of traffic control data.

Protocol Break

protocol break in action

What does the complete chain look like?

1. System A wants to send a message to system B.
2. The traffic from A towards B is routed to C, the

catcher. System A may believe it is talking to
system B, but in fact it is talking to a catcher,
which acts as a proxy for system B. Systems A
and C exchange data via means of a protocol.
They exchange both traffic control data and
payload data.

3. System C distils a payload and provides this
payload to system T, the thrower.

4. The thrower collects the payload data, and
sends it to system B via means of a protocol.
System B may believe it is talking to system
A, but in fact it is talking to a thrower, which
acts as a proxy for system A. Systems T and B
exchange both traffic control data and payload
data.

figure 4: a protocol break

A C T B

Upstream Downstream

C
at

ch
er

Th
ro

w
er

protecting confidential information using data diodes | 7

Data Diode Protocol

As we have already discussed, protocols may be very
complex. They may be implemented in hardware or
software; these implementations may have slight design
flaws which permit an attack on the system by exploiting
these flaws. Basically, this is the case because these
protocols are often designed and implemented for a
specific function, where security was not considered
essential, or of secondary interest in best case.

In the system described in Figure 4, the catcher and
thrower need some means of communication as well –
they need a protocol between them. This protocol is under
the full control of the security system designers. Security
of the protocol can be made a top design priority. The
protocol can be designed in such a way that the complete
state space of both catcher and thrower can be analyzed.
The protocol can be designed in such a way that it is
very trivial to detect any protocol deviations that may be
malicious. This special protocol between the catcher and
the thrower is called the data diode protocol.

How does the data diode protocol guarantee that when
the catcher system C is corrupted, the thrower system
T remains unaffected? Assume the protocol between
the attacker system A and the catcher system C is very
complicated. The attacker might be able to find an exploit
in the catcher, attack it and corrupt it. However, the
catcher cannot be used as a stepping stone to attack the
thrower. The data diode protocol spoken between the
catcher and the thrower leaves no room for attacking the
thrower because of its design. Were the catcher to try this,
the thrower would detect malformed protocol data and
simply ignore it. The important observation here is that
because the thrower cannot be corrupted, the thrower will

remain secure and cannot act as a stepping stone to attack
system B.

How does a protocol break work together with a data
diode? The data diode is put exactly between the catcher
and the thrower. The catcher and the thrower are often
referred to as "proxy servers". The catcher resides in the
upstream network, and is often referred to as the upstream
proxy server. The thrower resides in the downstream
network and is often referred to as the downstream proxy
server.

vulnerability assessment

Which components of the system are vulnerable
for attacks by means of deliberate protocol
deviations?

• First: System B. However, B only talks to system
T. System T is not under control of an attacker
and as such it cannot be attacked from system
T.

• Second: System T. System T talks to system B
which is supposed to be clean and to system
C. System C is not initially under control of the
attacker, but might be exploited.

• Third: System C. System C is initially trusted,
but talks to system A, which may be under the
control of an attacker. This may seem to be a
problem, but it is not.

 8 | protecting confidential information using data diodes

Payload and content
checking

how to prevent exploitation by the
payload

1. Accept the risk. After all, the downstream
network is completely isolated.

2. Do a very strict pattern matching on the
payload, only accepting payloads recognized
to be conformant (i.e. whitelisting). For
example, only accept "text" files with 7 bit ASCII
characters in it.

3. Do some pattern matching on the payload,
removing payloads recognized to be wrong (i.e.
blacklisting). This is essentially what an anti-
virus solution does. It keeps a lot of bad things
out, but it gives no guarantee whatsoever. An
advanced persistent threat will be capable
of ensuring its malicious payload will not be
recognized by using a zero-day exploit.

4. Convert the payload itself. Essentially, take all
information out of the source file, and create a
new one with the same contents. Conceptually
this is the same as what the catcher and the
thrower do, but now at the payload level. There
is no general solution for this; it turns out to be
extremely complicated and only works for very
well defined use cases.

5. Do a combination of the above. For example:
only accept JPEG files, convert those to PNG
and drop all other payloads.

We have not looked at the payload data yet. Using a data
diode and a catcher and a thrower, we have assured that
the delivery process of the payload cannot inflict harm,
and that the payload, if malicious, cannot exfiltrate data.
However, the legitimacy or non-maliciousness of the
payload itself has not been verified. This is a fundamentally
complicated issue. The payload, for example a PDF file,
may be constructed in such a way that the software which
presumably will be used for viewing the PDF file, may be
exploited. To address this, there are fundamentally five
approaches which are shown alongside.

Naturally, which approach is acceptable from a function,
cost and risk perspective will differ from case to case. There
is no magic bullet here, and depending on your adversary,
risk appetite, functional requirements and budget you may
choose your own balance between these approaches.

protecting confidential information using data diodes | 9

Could we also do just one
of both?
Can a protocol break be implemented without a data
diode? And can a data diode be used without a protocol
break? Of course, it depends. These are interesting
questions.

Firstly, a protocol break without a data diode: technically
this is perfectly possible. The catcher communicates
directly with the thrower without a data diode between
them. It will work. However, there are two caveats.

a. Without a data diode, there is no strong guarantee that
the information will only flow in the desired direction.
All kinds of provisions will have to be designed in the
software to guarantee that there is no communication
channel back possible; that there is no backchannel.
Fundamental research has shown that doing this
in software is extremely complicated; it is a large
undertaking to do this to a high level of assurance.
Approaches to product evaluation, such as Common
Criteria, provide some level of assurance via peer-
review and testing, but the results cannot be 100%
guaranteed. Only a data diode can provide a 100%
guarantee.

b. Without a data diode, is it very difficult to establish
whether the "protocol break solution" genuinely
provides a protocol break. The provider of the solution
has to be trusted that it has not cut corners anywhere
in the design and implementation of the solution.
With a data diode in the middle, you can be absolutely
certain that there is a protocol break: without a
protocol break, the setup would simply not work. Or
put in a "confusing" manner: the protocol will break
when using a data diode. There is one exception, this is
when a protocol is unidirectional by design.

A protocol is unidirectional by design when all messages
that are needed to make the protocol work are sent in the
same direction. In particular, the sender will keep on
working and sending data without ever receiving any
acknowledgement. A protocol that is unidirectional by

design will keep working when a data diode is put between
the sender and the receiver. The data diode protocol in
particular is such a protocol.

Secondly: a data diode without a protocol break. This
will only work for protocols that are unidirectional by
design. Participants in such a protocol will not notice a
data diode between them (as long as it is connected in
the right direction). However, virtually every protocol
nowadays is bidirectional. Everything that uses TCP is
bidirectional. The TCP protocol has provisions to stop
sending data when no acknowledgements are received
back from the addressee. When the addressee is situated
behind a data diode, the acknowledgements will never
pass back through the data diode, and as such prevent
the TCP protocol from delivering the data. Almost all
protocols that use UDP have similar provisions by means of
extra traffic control data sent in the reverse direction.

The single and notable exception is a subfamily of UDP
protocols that we call the unidirectional UDP protocols.
In these protocols, the sender keeps on sending data even
if it does not receive any confirmation whatsoever from
the addressee. In general this is a strongly discouraged
design practice, as it may lead to network congestion when
not used very carefully. However, some CCTV streaming
protocols and logging protocols use unidirectional UDP.
When applied with care, this is perfectly sensible.

Unidirectional UDP protocols, as stated, will work through
a data diode. In this case, it is possible to use a data diode
without a protocol break. A protocol break is still
recommended practice, though. The IP header of the UDP
packet is complex and may be a means to deceive routers
and switches on either side of the data diode.

Unidirectional UDP is supported by almost all data diode
vendors. However, only some data diode vendors provide a
genuine UDP protocol break.

 10 | protecting confidential information using data diodes

Confidentiality, Integrity
and Availability revisited
So where does all this bring us? The data diode prevents
data leakage from the downstream network to the
upstream network. The data that is sent from the upstream
network to the downstream network can be divided into
traffic control data (i.e. protocol metadata) and payload
data. The protocol break ensures that known and unknown
attacks in common and not so common protocols cannot
destabilize systems in the downstream network. All
traffic control data passing through the data diode is
fully controlled and designed to be easily rejectable in
case of malformed messages. Thus, the systems in the
downstream network cannot be attacked. Therefore, the
integrity and availability of the downstream networks
remains unchallenged.

The catcher, which resides in the upstream network, is
potentially susceptible to an attack. In the worst case, this
would cause the unidirectional traffic flow between the
networks to stop (i.e. to become "zero directional"). Thus,
the availability of the network connection is the worst
thing that could be compromised. That is still undesirable,
but there is nothing that can be done about that. We might
harden the catcher some more. However, because the
attacker has access to the upstream network, he could
disrupt any other component in the upstream network to
make network traffic cease.

Let us end with a systematic assessment of C.I.A.:
confidentiality, integrity and availability. In a "protecting
secrets" scenario, one aims to protect the downstream ne
twork.

confidentiality of the downstream
network
A unidirectional network connection or data diode ensures
the confidentiality of the information of the downstream
network. It prevents data leakage or data exfiltration
via the unidirectional network connection. Exfiltration
methods like printing, USB sticks and other unprotected
network connections are not prevented by a unidirectional
network connection. However, using unidirectional
network connections is a key enabler for enforcing strict
policies on portable media usage to prevent such.

integrity & availability of the downstream
network
A unidirectional network connection in itself does not
prevent attacks that may impact integrity and availability.
Merely using a unidirectional network connection does
however already mitigate the impact of an attack, because
a successful attack cannot "phone home" for instructions
or to exfiltrate data.

To prevent an attack, all traffic passing the unidirectional
network connection must be made harmless. This traffic
can be divided into traffic control data and payload data. A
protocol break neutralizes attacks that may come with the
traffic control data.

To be absolutely safe, the payload data must be neutralized
as well. This can be done, but it is very situation specific
and only when one can predict very precisely what the
form is of the data that will pass the unidirectional network

protecting confidential information using data diodes | 11

connection. In general cases, one can do a best effort
content check which permits a variety of data formats to
flow in, at the price of not knowing whether all attacks
have been stopped.

availability of the unidirectional network
connection
A unidirectional network connection is used to enable
communication between two otherwise unconnected
systems. The approach described places security controls
around the unidirectional network connection, but in its own
right cannot ensure the availability of the unidirectional
network connection itself. We have not prevented an
attacker taking control of the upstream servers and
preventing them from sending data to the downstream
network – we have mitigated the risks of the damage an
attacker can cause in terms of protecting secrets, but not
from denial of service.

To prevent a denial-of-service attack on the network
connection, other security mechanisms and architectures
must be used. Discussion of these methodologies is
outside the scope of this paper.

concluding remarks
As shown by this assessment, by using a data diode in
combination with a protocol break, we have ensured the
best possible protection of the “secrets” in the downstream
network, using a fail-safe approach.
Such approaches to protecting “secrets” have been used
in high assurance environments to protect state secrets

for many years. These solutions are now readily accessible
in commercial markets available to solution and security
architects.

Our advice:
• Assess your information assets, and determine which

are your most valuable business “secrets”, and the
impact of these leaking from your organization.

• Locate these “secrets”: are these on networks that are
connected to the Internet?

• Ask yourself: should they be on networks that are
connected to the Internet?

about the authors
Dr. Wouter Teepe is Business Line Manager at Fox-IT.
Fox-IT creates high-assurance solutions protecting critical
digital environments against the toughest adversaries. He
holds a Master's degree in artificial intelligence and holds
a PhD in computer security from the University of
Groningen.

Colin Robbins is Technical Director and Chief Technology
Officer at Nexor – providing trustworthy technology
solutions where confidentiality, integrity and availability
are critical. He holds a Joint first class honours Bachelor’s
degree in Computer Science and Electronic Engineering
from University College, London, and is a CESG Certified
Professional (Lead Security & Information Risk Assessor).

 12 | tracks inspector | white paper | march 2012

fox-it prevents, solves and mitigates the most
serious threats as a result of cyber-attacks,
fraud and data breaches with innovative
solutions for government, defense, law
enforcement, critical infrastructure, banking,
and commercial enterprise clients worldwide.
Our approach combines human intelligence
and technology into innovative solutions that
ensure a more secure society. We develop
custom and packaged solutions that maintain
the security of sensitive government systems,
protect industrial control networks, defend
online banking systems, and secure highly
confidential data and networks.

fox-it.com

fox-it

Olof Palmestraat 6, Delft

po box 638, 2600 ap Delft

The Netherlands

t +31 (0) 15 284 79 99

f +31 (0) 15 284 79 90

e fox@fox-it.com

for a more secure society

